The kinetics of slow-binding and slow, tight-binding inhibition: the effects of substrate depletion.

نویسنده

  • S G Waley
چکیده

Inhibitors with dissociation constants in the micromolar to nanomolar range are important, but hard to characterize kinetically, especially when the substrate concentration in the assay is less than Km. When inhibition increases during the course of the assay (slow-binding inhibition) the concentration of substrate may decrease appreciably. Methods that take substrate depletion into account are described for analysing experiments in which the initial substrate concentration is below Km. Fitting progress curves gives the rate constants for the second (slow) step in a two-step mechanism. An approximate value for the overall dissociation constant may be determined from measurements of rates when the reaction is treated as a first-order process. When the concentrations of inhibitor and enzyme are comparable numerical methods are required. Procedures, suitable for implementation on a microcomputer, for the solution of the differential equations and the fitting of progress curves are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

Kinetics of slow reversible inhibition of human muscle creatine kinase by planar anions.

The toxicity of NO3- and NO2- to mammals has been widely publicized. However, the kinetic mechanism of inhibition of human muscle creatine kinase by NO3- and NO2- has not been explored. The kinetic theory of the substrate reaction during the modification of enzyme activity previously described by Tsou (Adv. Enzymol. Related Areas Mol. Biol. 1988, 61, 381-436) has been applied to a study of the ...

متن کامل

Virtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids

Allopurinol, the xanthine oxidase inhibitor, is the only drug available for the treatment of gout. We examined the xanthine oxidase inhibitory activity of some commercially available flavonoids such asepigallocatechin, acacatechin, myricetin, naringenin, daidzein and glycitein by virtual screening and in-vitro studies. The interacting residues within the complex model and their contact types we...

متن کامل

Virtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids

Allopurinol, the xanthine oxidase inhibitor, is the only drug available for the treatment of gout. We examined the xanthine oxidase inhibitory activity of some commercially available flavonoids such asepigallocatechin, acacatechin, myricetin, naringenin, daidzein and glycitein by virtual screening and in-vitro studies. The interacting residues within the complex model and their contact types we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 294 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1993